Possibility of Direct Conversion of CH₄ and CO₂ to High-Value Products

W. Huang,¹ K.-C. Xie, J.-P. Wang, Z.-H. Gao, L.-H. Yin, and Q.-M. Zhu*

Shanxi Key Lab of Coal Science and Technology, State Key Lab of C1 Chemistry and Technology, Institute of Coal Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China; and * State Key Lab of C1 Chemistry and Technology, Tsinghua University, Beijing 100084, China

Received December 20, 2000; revised March 1, 2001; accepted March 1, 2001; published online May 31, 2001

The possibilities of low-temperature activation of CH_4 and hydrogenation of CO_2 were analyzed, and the feasibility of the direct conversion of CH_4 and CO_2 to oxygenated compounds by means of a two-step reaction sequence at low temperature was studied. Preliminary experimental results show that the interaction of CH_4 adspecies with CO_2 on Cu–Co-based catalysts can produce various compounds such as alcohol, aldehyde, ketone, carboxylic acid, and cyclopentane derivatives. The product composition and distribution depend greatly on the way in which the feed is introduced, but acetic acid and a cyclopentane derivative are produced according to the three methods studied. The optimum temperature is 250°C and the optimum Cu/Co ratio is 5 for acetic acid production. FTIR measurements confirmed the formation of CH_x and CH_xO over the catalysts used. © 2001 Academic Press

Key Words: methane; carbon dioxide; Cu–Co catalysts; two-step reaction; acetic acid.

1. INTRODUCTION

Conversion and utilization of CO_2 as well as of CH_4 are important subjects in the field of C_1 chemistry. Converting CO_2 is desirable because of its greenhouse effect. Due to the large CH_4 reserves in the world and its economic and environmental superiority to coal, it may become the main source of energy and chemical feedstock after petroleum. Conversion of CO_2 requires consumption of hydrogen, while that of CH_4 requires oxygen. Therefore, the conversion of CH_4 and CO_2 together is an ideal combination of an oxygenation reaction and a reduction reaction.

Basically, there are three routes for the chemical use of methane. The first is the so-called indirect route, in which methane is converted into syngas in the presence of water (steam reforming), CO_2 (carbon dioxide reforming), or oxygen (partial oxidation); and the resultant syngas can be used in the traditional way. The second route is direct coupling in the presence of oxygen (oxidative coupling of methane) or hydrogen (two-step polymerization). The third

route is the conversion of methane directly to oxygenates (CH₃OH, CH₂O), methane chlorides, or HCN in the presence of oxygen, Cl₂, and HCl or ammonia respectively.

When the existing technology is applied, CO_2 and CH_4 are converted in an indirect method. First, CO_2 and CH_4 are converted into CO and H_2 by reforming at high temperature (generally >800°C); then CO and H_2 are further transformed to oxygenates or to higher hydrocarbons through the Fischer–Tropsch reaction at lower temperature (~320°C). This indirect method appears to be inefficient, since all of the hydrogen in the methane is stripped in the first step and then subsequently reintroduced in the second. Moreover, reforming requires a large energy input, but only part of the energy is recovered in the second step. The temperature differential further exacerbates the heat transfer problem of the process (1).

Our laboratory is trying to develop a technology by means of which methane and CO_2 can be converted directly to high-value chemicals at low temperature (100–400°C). An outline of the proposed research is given in Fig. 1.

The present study was conducted to determine whether direct low-temperature conversion of CH_4 – CO_2 occurs in a two-step reaction sequence with the aim of developing oxygenates, such as acetic acid.

Direct low-temperature conversion of CH₄-CO₂ has been studied in only a few cases (2-6). Raskó and Solymosi (2, 3) observed that CH₃ adspecies (from azomethane) reacted rapidly with CO₂ to CO, CH₂O, and CH₃O at low temperature over TiO₂ and Rh/SiO₂ catalysts. Fujiwara et al. (4) reported that high yields of acetic acid resulted from the direct reaction of CH₄ with CO₂ by means of homogeneous catalysis at 80°C using a Pd(OAc)₂/Cu(OAc)₂/K₂S₂O₈/TFA catalyst, which created a new way of synthesizing acetic acid and using CH₄. Yan et al. (5) investigated the direct carbonylation of CH₄ by means of a two-step method and observed the formation of ethanal and ethanol. In their patent (6), Freund et al. claimed to have developed a method of manufacturing acetic acid from CH₄ and CO₂ using VIIB or VIII metal-supported Al₂O₃ or SiO₂ catalysts at 100-600°C, but they did not give specific examples. Generally speaking, all low-temperature reactions involving CH₄ and CO₂ are

¹ To whom correspondence should be addressed. Fax: 86-351-6018453. E-mail: huangwei@tyut.edu.cn.

FIG. 1. Profile of direct synthesis of acetic acid from CO₂ and CH₄.

thermodynamically unfavorable (1); thus, it is necessary to adopt unconventional methods. Recent publications (1, 7, 8) have shown that activation of CH₄ to CH_x (x = 0, 1, 2, or 3) at low temperature over certain metal catalysts is not especially difficult. The key difficulty is achieving lowtemperature conversion of CH₄ by using CH_x species to avoid high operating temperatures, high-energy consumption, and coke deposition of the existing conversion method of CH₄. The C-H bond energy of CH₄ is equal to the H-H bond energy. Moreover, the activation of CH₄ produces the same intermediate (CH_x) as the hydrogenation of CO₂:

$$CH_4 \xrightarrow{Catalyst} CH_x \xrightarrow{CO_2} oxygenates,$$
 [1]

$$\operatorname{CO}_2 \xrightarrow{\operatorname{H}_2} \operatorname{CH}_x \xrightarrow{\operatorname{CO}_2} \text{oxygenates.}$$
 [2]

Accordingly, it is reasonable to study the possibility of lowtemperature conversions of CH_4 and CO_2 using the catalysts for hydrogenation of CO_2 .

2. METHODS

2.1. Catalysts

A series of copper–cobalt-based catalysts with Cu/Co ratios from 0.3 to 6 were used in this work. These catalysts are generally used in the hydrogenation of CO₂ and CO and can activate CH₄ as well as insert CO_x (x = 1 or 2). The preparation method is described in detail in the literature (9). To ensure that the oxygen contained in the products comes from CO₂ rather than from crystal lattice oxygen, we did not add nonreducible oxides to some catalysts.

2.2. CH₄-CO₂ Temperature-Programmed Surface Reaction (CH₄-CO₂ TPSR)

The temperature-programmed surface reaction (TPSR) of CH_4 - CO_2 was carried out using a TP-5000 apparatus (Xianquan Instrument, Tianjin) with a thermal conductivity detector. A sample of 100 mg was first treated with a reducing gas of 10% H_2/N_2 at a flow rate of 20 ml/min in a temperature-programmed manner. The final temperature was 400°C. After treatment, the sample was exposed at 350°C to a 10% CH_4/Ar flow for 10 min and then to pure Ar for 5 min. Thereafter, the reactor temperature was decreased to 50°C. A mixture of 10% CO_2 in Ar or 10% CO_2 and 5% H_2 in Ar was passed over the catalyst from 50 to 600°C at 15°C/min.

2.3. Reaction Procedure

The catalyst (2.5 g) was placed in a continuous fixedbed flow reactor. Before the reaction, the catalyst was reduced in situ with 10% H₂/N₂ at the same temperature used in the TPSR. After reduction, the catalyst was fed at normal pressure alternatively with CH₄ or CO₂ at the given temperatures. The products were collected in a trap cooled with ice-water or absorbed by a 0.1 N NaOH solution and analyzed by means of gas chromatography (GC 6890 A/5973 MSD) and ion chromatography (Dinox-500, Dinox, United States), respectively. The composition of the outlet gas was analyzed on a GC-9A gas chromatograph (Shimadzu, Japan) fitted with a thermal conductivity detector. The feed gases, such as CH₄, CO₂, Ar, and H₂ were provided by the Beijing Analysis Instrument Plant and by the Taiyuan Iron and Steel Company. The feed gases did not contain C_{2^+} compounds detectable by chromatography.

2.4. Catalyst Characterization

The fresh and used catalysts were both diluted with KBr, and IR spectra were measured with an FTS-165 FTIR instrument (Bio-Rad, Richmond, CA).

3. RESULTS AND DISCUSSION

3.1. CH₄-CO₂ TPSR

The catalysts with Cu/Co ratios from 0.3 to 6 (referred to as CC03 to CC6) were investigated by means of TPSR. Figure 2 shows a typical CH_4 - CO_2 TPSR profile. The operating conditions were described in Section 2 and are also in the caption to Fig. 2. The figure shows clearly that there is a sharp peak at about 200°C. A similar pattern was

FIG. 2. Temperature-programmed surface reaction of adsorbed CH₄ with CO₂ on catalyst CC5. Flow 10% CH₄/Ar for 10 min and Ar for 5 min at 350°C, followed by a decrease in temperature to 50°C, and then (1) flow 10% CO₂/Ar from 50 to 600°C at 15°C /min, (2) flow 10% CO₂/5% H₂ /Ar from 50 to 600°C at 15°C/min.

obtained when CO_2 was replaced by CO_2/H_2 to react with CH_4 adspecies, with the result that the intensity of this peak increased. This shows, on one hand, that the same reactions occur with both $CH_{x(ad)}/CO_2$ and $CH_{x(ad)}/CO_2/H_2$ and, on the other hand, that H_2 is beneficial to the reactions. Several investigations (1, 7, 8) have demonstrated that adsorption of CH_4 on the catalyst surface is a process of dehydrogenation, and that this process is enhanced with adsorption time and cleaning with a diluting gas after the adsorption. Thus, in the pure CO_2 reaction with CH_x species to acetic acid, after cleaning with a diluting gas, performed in the absence of hydrogen, adding hydrogen to the reaction represents a clear advantage.

3.2. Activity and Selectivity

Figure 3 shows the production of acetic acid over the typical Cu–Co catalysts and its dependence on reaction temperatures. All reactions were carried out at normal pressure and under isothermal conditions. The products were collected in the alkaline solution and analyzed by ion chromatography. The catalysts were alternatively exposed to a CH₄ flow of 50 ml/min for 5 min and a CO₂ flow of 75 ml/min for 10 min. The product of 20 cycles was collected for analysis. Figure 3 shows that the rate of acetic acid formation increases with increasing Cu/Co ratio and operating temperature, and reaches a maximum at a Cu/Co ratio of 5 and a temperature of 250°C. This result is consistent with that of the TPSR.

Formic acid is a primary side product that can be detected by ion chromatography. The production of formic acid is interesting, because unlike acetic acid, formic acid was not obtained for any catalyst at 250°C, the temperature at which the most acetic acid was produced (Fig. 4). The cause is unclear at this time. Generally speaking, a higher reaction temperature is favorable.

The liquid product, collected in the trap cooled with an ice-water mixture, was analyzed by GC-MS. Methanol,

FIG. 3. Comparison of Cu–Co catalyst activities to acetic acid (the rate refers to 20×15 min, Z = Zr).

FIG. 4. Comparison of Cu–Co Catalyst activities to formic acid (the rate refers to 20×15 min, Z = Zr).

formaldehyde, butanone, methyl furan, and two cyclopentane derivatives were present in the liquid product together with formic and acetic acids. When the method of introducing feed was changed, the composition and distribution of the product also changed considerably.

The first feed (feed consisted alternatively of 50 ml/min CH_4 for 5 min and 75 ml/min CO_2 for 10 min, both at 200°C, and cleaned with diluting gas for 5–10 min at the gas switch interval) produced mainly C1-C4 alcohols (48%), two cyclopentane derivatives (44%), and some acetic acid (5.6%). The second feed (CH₄ and CO₂ fed alternatively as described above, but no cleaning in the gas switch interval) gave mainly formic acid (36%) and compounds such as butanone (2.40%) and α,β -butenone (trace), and methyl furan (5.50%) in addition to methanol (21%), acetic acid (28%), and a cyclopentane derivative (3.4%). The third feeding method (CH4 and CO2 fed simultaneously under the same conditions as the first feed except temperature was 350°C) produced only formaldehyde (68%), a cyclopentane derivative (21%), and acetic acid (12%). No liquid product was obtained at a reaction temperature of 200°C held for 6 h. Because the third procedure is thermodynamically constrained, the formation of acetic acid is noteworthy. A similar result, observed by FTIR, has been reported (10). From the GC-MS analysis, the second type of feed results in the primary side products of methanol and formic acid.

The composition and distribution of the products, as well as the formation of cyclopentane derivatives, change with the type of feed, thus supporting to a great extent the occurrence of carbon-chain growth as the first step of the reaction (11). This is because cyclopentane is one of the primary products with high carbon chains in the homologation of CH₄ through an isothermal two-step reaction. CH₄ adspecies can become dehydrogenated and polymerized during the cleaning with diluted gas, which results in a larger quantity of the products with higher carbon chains in the first type of feed.

FIG. 5. Composition of outlet gas 3 min after feeding CH_4 in each reaction cycle.

3.3. The Outlet Gas

Checking the hydrogen formation during the feeding of CH_4 and comparing the amount of CO_2 in the outlet gas during feeding with CO_2 after and before exposure of the catalyst to a CH_4 flow, information about catalyst performance can be obtained. This is because hydrogen formation represents the degree of CH_4 activation, and the change in CO_2 produced in the outlet gas during feeding with CO_2 reflects the extent of the CO_2 reaction with the CH_4 adspecies. As shown in Fig. 5, hydrogen formation is approximately constant after 10 cycles of feeding CH_4 . This reveals that catalyst performance remained steady during the period of observation.

Figure 6 shows that the amount of CO_2 outlet gas changes with reaction time for the CC5 catalyst. The upper curves (Fig. 6), which represent the CO_2 adsorption curves, are those of the CO_2 outlet gas introduced after the catalyst had been cleaned with Ar for 20 min following a complete cycle. The lower curves, representing the CH_4 – CO_2 reaction, are those of the CO_2 outlet gas introduced after the

FIG. 6. Change of CO₂ outlet gas with reaction time.

FIG. 7. FTIR spectra of the used catalysts: (1) CH_4 and CO_2 fed simultaneously, (2) CH_4 and CO_2 fed alternatively, (3) hydrogenation of CO_2 .

catalyst had been exposed to a CH_4 flow and then cleaned with Ar for 10 min. These two groups of experiments were carried out alternatively. The results show that the amount of CO_2 in the outlet gas changes more when CH_4 adsorption occurs, indicating that CO_2 reacts with the CH_4 adspecies and that the activity of the catalysts did not decrease during the period investigated.

3.4. FTIR Measurements

FTIR measurements of the used catalysts (Fig. 7) show that, as well as CO_2 adsorption peaks at 2365 and 2340 cm⁻¹. strong C–H peaks appeared at 2952, 2922, and 2853 cm⁻¹, which are very close to those observed for CH₃ (from azomethane) adsorbed (2960, 2922, and 2854 cm^{-1}) on Rh/SiO₂ (2) and TiO₂ (3). The peak at 2922 cm⁻¹ can be attributed to CH_3 adspecies (2, 3, 12), and the peaks at 2952 and 2853 cm⁻¹ correspond to adsorbed CH₃O (2, 3). An identical FTIR spectrum was obtained when the catalyst was used for hydrogenation of CO₂ (curve 3). Comparing the peak intensity at 2800 to 3000 cm⁻¹ and the three types of feed, the highest intensity was found when using simultaneous feeds, followed by the intensity during the hydrogenation of CO₂, and the lowest intensity was found when using the alternative method of feeding. Because nearly all of the reactions for the synthesis of oxygenates from CH₄ and CO2 are thermodynamically unfavorable at low temperature, CH_x species produced in the simultaneous feed cannot react effectively with CO₂ to products. Therefore, it is reasonable that the peaks at 2800 to 3000 cm^{-1} are stronger. On the contrary, when CH₄ and CO₂ are fed alternatively, the produced CH_x can react effectively with CO_2 and convert into products (a two-step reaction sequence can overcome the thermodynamic limitations). In addition, FTIR measurements of the catalysts after the reaction with CO_2 reflect the concentration of the CH_x adspecies remaining on the catalyst surface. This explains why the intensity of the obtained peak was lower. This suggests that CH₄ may be activated effectively on the surface of Cu–Co-based catalysts, even in the presence of CO_2 ; i.e., the presence of $CO_2(CH_4:CO_2 = 1:1.1)$ does not greatly affect the ability of the catalysts to activate CH₄. It is obvious that the alternative feed method can result in the effective conversion of CH_4 and CO_2 at low temperatures.

4. CONCLUSIONS

The results indicate that the direct conversion of CH_4 and CO_2 to high-value products is possible. The main obstacle is presented by thermodynamics rather than kinetics. The thermodynamic limitions can be circumvented by the periodic operation of a catalyst.

ACKNOWLEDGMENTS

This work was supported by the Shanxi Provincial Natural Science Foundation and the Shanxi Research Foundation to Returned Scholars (China).

REFERENCES

- 1. Guczi, L., Van Santen, R. A., and Sarma, K. V., *Catal. Rev.-Sci. Eng.* 38, 249 (1996).
- 2. Raskó, J., and Solymosi, F., Catal. Lett. 46, 153 (1997).
- 3. Raskó, J., and Solymosi, F., Catal. Lett. 54, 49 (1998).
- 4. Fujiwara, Y., Taniguchi, Y., Takaki, K., Kurioka, M., Jintoku, T., and Kitamura, T., *Stud. Surf. Catal.* **107**, 275 (1997).
- 5. Yan, Z., Xu, J., and Shen, S., Tianranqi Huagong 22, 37 (1997).
- 6. Freund, H.-J., Wambach, J., and Seiferth, O., and Dillmann, B., Patent DE 4428566C1, Germany, 1995.
- 7. Tanaka, K.-I., J. Chem. Soc. Chem. Commun., 938 (1982).
- Pareja, P., Molina, S., Amariglio, A., and Amariglio, H., *Appl. Catal.* A 168, 298 (1998).
- Huang, W., Xie, K., Li, X., Li, Y., and Yin, L., *in* "Greenhouse Gas Control Technologies" (B. Eliassion, P. W. F. Riemer, and A. Wokaum, Eds.), p. 361. Elsevier, Amsterdam, 1998.
- 10. James, J., and Makarand, R., International Patent WO 99/59952, United States, 1999.
- 11. Amariglio, H., Pareja, P., and Amariglio, A., *Catal. Today* **25**, 113 (1995).
- 12. Driessen, M. D., and Grassian, V. H., J. Catal. 161, 810 (1996).